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ABSTRACT

Filters which modify their structures in order to recognize

initially unknown waveforms in Gaussian noise are investigated

experimentally. The class of filters discussed include two types

previously described in the literature and one new type designed

explicitly for operating in a multiple waveform environment. The

new structure processes the data in a nonlinear fashion and effec-

tively sets up a narrow decision region about the estimate of the

waveform. The parallel operation of adaptive systems for detecting

and estimating the signal parameters of multiple signals simul-

taneously is also discussed.

Throughout the discussion, the emphasis is on the effects of

time of arrival errors and incorrect decision errors such as false

alarms and incorrect signal identification. Low signal-to-noise

ratios, 5 to 20 (7 db to 13 db), are studied.

The results clearly demonstrate the possibility of using filters

of the new type for automatic data processing. Results are given

in the form of learning curves which show the effects of correct and

incorrect decisions. Included in muchof the discussionis a graphi-

cal interpretation of the filtering process.

Two unusual applications of the new filter structure are

discussed in the appendices.
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I. INTRODUCTION

Many areas now being investigated may be considered as

examples of pattern recognition or as the extraction of the

relevant information from the irrelevant. Signal detection may

be viewed as such with noise being the unimportant component.

Today's world is beset by masses of data which, at some time,

must be examined for the relevant. If the data could be analyzed

automatically, great savings in time and storage facilities could

be realized. For example, pulse signals could be recorded in

terms of shape and time of arrival rather than as a continuous

input. At the very least, machine analysis could determine which

part of the input was completely useless and which may require

additional study. On the other hand, near optimum machine

performance would provide greater quantities of more reliable

information than are presently possible. Most of the effort in

pattern recognition has dealt with patterns known by the observer

beforehand (for example, check reading devices, radar detection).

Emphasis is now on the recognition of partially known or poorly

articulated patterns (1-5) (for example, recognition of hand sent

Morse code, handwritten letters or spoken words).

It is the purpose of this study to consider the automatic

processing of pulse waveforms in noise. In particular, the paper

Numbers in parentheses refer to references given on page 131.
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will be concerned with an experimental investigation of systems

which modify their structure in order to recognize initially unknown

waveforms in additive Gaussian noise. Some systems of this type

have been discussed previously under the generic name of adaptive

filters (2-4). Limited experimental and mathematical studies of

their properties have been carried out (2, 6-10).

A general treatment of the problem requires consideration of

the following desiderata:

1. There is no guarantee that the input contains only one

waveform train.

2. The signal amplitude may vary over a wide range from

pulse to pulse.

3. The waveform structures are initially unknown.

4. There is no realistic way by which costs may be assigned

to errors.

5. The probability of occurrence is unknown and the

repetition intervals may be random.

6. The times of arrival are unknown.

7. A limited number of signal repetitions are available to

the observer before they vanish.

8. The processing is to be as close to real time as possible.
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The first two conditions represent the severest departure from the

past. Previous work is restricted to situations where only one

fixed amplitude waveform is present. Unfortunately, if the con-

tents of the data are unknown, it can neither be assumed a priori

that only one pattern will be present nor that the patterns will have

fixed amplitudes. Condition 4 reflects the observer's ignorance of

the precise causes of the waveforms present. The causes are

presumed unknown because the waveforms are unknown. Similarly,

the probability of occurrence must be unknown. Together, these

statements imply that the decision thresholds must be chosen on

the basis of allowable false alarm rate cr other intuitive judgments.

Statements 6 and 7 are obvious, but lead to basic limitations in

what the observer can expect to determine from the data. Each

condition is sufficient to limit the final degree of knowledge of the

waveform parameters. Although in past work (2,4) it has not been

claimed that the arrival time was known, it has been implied that

it could be measured exactly. Clearly, the presence of noise

spreads any measurement of time of arrival. The last requirement

is somewhat arbitrary, but is imposed as a limit on the processing

which may be used (for example, repeat runs for detection of other

waveforms after all examples -)f one signal have been identified are

not allowed).
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It should be noted that an observer is not always faced with

all of the above constraints. The relaxation of any of them means

that the filtering requirements can be more accurately stated. Con-

sequently, a filter designed under reduced restrictions will perform

better on the average than a completely general one. Alternatively,

the more general system will operate if the a priori knowledge of

conditions is poor or faulty; whereas, the special one may fail.

For the analysis of unknown data, then, the most general system

must be used.

To proceed, it is necessary to make some assumptions which

will hold throughout the discussion. The basic assumption, central

to any scheme which utilizes past information, is that this informa-

tion must be useful in the future. In other words, a system improves

its performance only if future situations are similar to those of the

past. In terms of the waveform filter, the signals are required to

be repetitive. This is necessary from the point of view of reliably

determining waveform structure and continually improving system

performance. It is also presumed that the pulses do not overlap

in time (that is, the pulse trains are interleaved). Further, it is

assumed that the noise is stationary, additive, and Gaussian with

a known variance and zero mean. Any realizable data is bandwidth

limited by sensors or prefiltering and it is supposed that this limit

(WM is known. The duration of any pulse is also limited (< T).



-13-

Thus the input can be represented by 2WT measurements. The

choice of T is left to the discretion of the observer but must be

large enought to include any waveforms of interest.

Proceeding from these conditions and assumptions, the

study includes the derivation of a new type of filter by means of

statistical decision theory. This filter, which is designed for

multiple waveform environments, is described along with other

adaptive systems in Section II. The inherent difficulties in trans-

ferring the equations to practice are discussed in Section M. The

principal problems involve measurement bias and readout time

errors. Some mathematical analysis of the adaptive filters is

carried out in Section IV. A number of different filter types in

various environments are studied experimentally in Section V.

Special emphasis is placed on low signal to noise ratios and the

effects of decision errors. Included in much of the discussion is

a graphical interpretation of the filtering process.
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II. THE DETECTION PROBLEM

A. MATHEMATICAL TREATMENT

The usual problem of signal detection is approached

from the point of view of hypothesis testing (11). Under a number

of different criteria which minimize the cost of the decisions to

the observer this leads to the use of the likelihood ratio A(V) for

comparing hypotheses.

( FN(V IS ))S
A(V) = -- ( (1)( FN(V ISp ))Sa

(FN(V ISa)>S = W(S) FN(VISa) dS a (2)
C,

The function (FN(V Is ))S is the N-dimensional conditional
probability of the waveform S causing the data V averaged

over the unknown parameters of the waveform. The function

W(S ) represents the distribution of the true signal parameters

about the values S known to the observer.

The hypothesis H that signal S rather than SA is

present where only these two are considered, is chosen if

AMV > A CL (3)

where the threshold A C depends upon the costs assigned to the

errors or the error rates allowed. The problem of detecting and
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separating multiple signals in noise generally involves the

construction of likelihood ratios for each pair of signals, including

noise. This yields a signal space which is broken into various

decision regions. The technique is useful only if no waveforms

other than those previously identified are present. This assump-

tion cannot be justified in the design of a system which is to look

at incoming data with no knowledge of its contents.

It is obvious that the situations which will be of most

interest in solving the overall problem will be those of detecting

a waveform in noise and detecting a waveform in an environment

of other signals, the characteristics of which may not be known.

Some of the cases to be discussed here have been previously

treated elsewhere (Cases I-I1) (2), but are included for complete-

ness and later use.

In the discussion to follow, it is assumed that

N
v(t) =E] v fro(t) 0 !c t !c T (4)

m=i m M

v(t) = s(t) + n(t)

v 5m +n (5)m m m

where the set { frm(t)} is a complete orthonormal basis over the

interval 0 : t ! T. For the purposes of this paper, it is convenient
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to consider the expansion to be in terms of sample values spaced

i
seconds apart. This representation yields noise coefficients

n which are independent Gaussian variables with zero means
m

and equal variances 02

Case I Detection of a Completely Known Signal in Noise

If the waveform is completely known and can be specified

by N = 2WT independent measurements, then

N* N
W(SQ) = m=n 6(sma ma W(S rl 6(Smp) (6)

exp[- E (vym a M)
A(V)M Zim M=1

1 N/2 N N 2

N *2 *[ • ma - 26 v] .(7)

= exp I- m=i ma ma Vm)

H is selected if Equation (7) exceeds A . The decision can also

be made if

N *
v s > A . (8)

m=1 m ma a

The correlation between the input and the signal provides the

optimum measure for making the decision.
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Case II Detection of a Completely Unknown Signal in Noise

In this situation, it is necessary to assume some form

of signal parameter distribution and it is usual to assume that the

parameters are equally likely to occur at any point in the signal

space. Therefore, a uniform distribution is assumed for W(S ).

It is also assumed that only the region

Is maI < d d >> a (9)

is examined for practical reasons. Then

~d ... d 1 N 1 N /2 N ?] d m"'" j (M -) "J exp - -'m= (V m- Msn°) 2 ~ °

AM -d -d
1 NIZ [ I N 2Z

exp[- E v ]
Ziro- Z- m=i1

2 N/2 N'•( --- ) exp E v (10)
4d irm=1 m

Comparison of Equation (10) with a threshold is equivalent to
N

comparing E v with a different threshold. The decision is
m=1 m

made that a signal is present on the basis of the energy measure

N 2
Ei v n (> A)M= 1 m
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Case ITT Detection of a Partially Known Signal in Noise

The basic assumption here is that the parameter values

known to the observer have a Gaussian distribution about the true

parameters with variance k2 .

1 N/2 
NW(S a)- (- 7) r e xp. (a Mk--- l a .mC)2 (12)

2k m= 2k

2 r~ 2+G exp - I - . z (v m . amd)2

A 2(k +4 2(k22+o )m==1
N/2) ex 1 2- ][mN -% 2]S NI2 2

[L .I exp[" +E vm

2-rra W m1

2 N/2 N N * 2a'-J2• exp[- 1 t , _ m•V.2m- 2" v; V m6 * m a *,11

a- +k 2(k2+a-) - m== m =

(13)

H is chosen if
CL

1 k 2N 2 N > A-14r E v + 2 E v m > (14)2 m= t m m=im ma a3

The value of k is a measure of the uncertainty in the

observer's knowledge of the parameters. If k = 0 the signal is

known exactly and the detection process reduces to Case I. If k

is very large, little is known of the parameters and the process

reduces to that of Case IH.
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It would be possible at this point to determine the optimum

detection method for separating two waveforms, each of which are

partially known, but this will not be a significant case in the develop-

ment. Middleton (9) has discussed this situation in detail. What will

be of interest is the separation of a partially known waveform from

other unknown signals.

Case IV Separation of a Partially Known Waveform from All Others

In this situation the distribution of parameters of unknown

signals is again assumed to be uniform throughout the space in a

manner identical to Case H. The partially known signal is again

assumed to have a Gaussian distribution about the true parameters.

N/2 N2•(k+r2J exp- E • (v. m- am)2

Z(k +a. ) I2(k2+o2 m=i
d d N I N/Z N 2
.. j 7n() 1 e xp [--7 (vm- amp Z damp

-d -d m=1 0-

4d 2  N eZ [ I N 22' Z( z +o exp [- E (v m inma)z

r(k +(r )2(k-+(r ) m=(

This is equivalent to saying that H is chosen if

N 2 N N N *2
E v -2 E vm sm + E a <A a (16)

m= m m1i =m ma 4

Equation (16) is simply a squared error criterion. If the above

measure exceeds the threshold, it is decided that a waveform other

than S is present. The waveform may be another signal or merely

noise.
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One feature to be noted is that the filter will fail to detect

a signal of the same shape as S but with a different amplitude.ci

The problem would occur if there should be a change in transmission

characteristics that is not reflected in a change of parameter

estimates. It therefore becomes important to investigate the type

of filter that would be necessary for variable amplitude waveforms.

Case V Separation of a Known Signal with Variable Amplitude

from All Other Waveforms

Once again a uniform distribution of unknown signal

parameters is assumed. For the known signal it is assumed that

the amplitude has a Gaussian distribution of mean A 0 and variance

2a . The values of the known parameters are given in normalized
N

form with Z s a* = 1. Under these conditions the likelihood
I ma

ratio becomes

A (/V )N/Z
A ('-") (=i=

Zwa 2ro,

sm. sD 11exp[Z~v 6s.,ýAon )do. excp ( A)

jdjd N N/Z NI

-d -d -WW M=2



A V Z N f Dex

(2d) r
2 1/2 -- 2 N IZEv -A )

(Zwa )a (27ra ) - 2 ~

20 *22

10D M~l2aZ

(2d)N _rep r N v2 N a* )2

(Z'wa ) (2,r )Z m1 =

N 2 N *2 N *vrI 2
JexpL+(v 8 )Z2A E v ma+A E 8m JexpL .- (A -A0 ) jdA

N *2
but E ea

1 Z) e r mmmamin}

A(V)(2d 2N / xp [+A{ -V 1 N 2
(2a2) 12(2wo M m m M

rxprv m * A~l ...r.- (A-A0 )2 ] dAOD 2o~-T I va 2~a
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(u 2/d)N 2w 2 cZ 1/2 N N Z
AM~/Z1T a / N v m-( Ev m a}J(ZV a 2 (ZNa- 2 o--+a Zr'- m="i mM(Zwa ) (2wo")

1 N * 121exp - v m A 0112(a +-)r M 1

4d2 N/2 2 1/2 1 N 2 a2 N ,2
s(-) --- ~ exp[~ E v E yin)

2WO" w +a 20-m=i Z r (a +wr m=m I

2A N A 0 2

+ 2( a ma . (17)
2(a+o"r ) m= I 2(a +ow

Thus, H is chosen if0

N 2 2 N 2 2A0Tr2 N A A0 2 r2

- E v _•..;707( T v m ÷) +---•u v mms Z >m=I a+. m= m a +(r m=i a +w 5

Notice that the variable amplitude has introduced a new term of the
N *2

form ( E vsm ) . This term will also arise in the last case to
rn m I

be considered.
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Case VI Separation of a Partially Known Waveform of Varying

Amplitude from All Other Signals

A number of assumptions are required to produce any

results in this caqe. Their justification will be considered more

completely later. The signal parameters known to the observer

are once again presented in normalized form, that is

N *2
E s

m=i ma

The true normalized parameters have a Gaussian distribution about

the estimates, and once more a Gaussian amplitude distribution is

assumed. The characteristics of the other waveforms remain the

same as in the two previous cases.

V N/Z N/Z 1/2 0

.W- Zirk ,"Ia

-oaDNAs *)ZJds exj!4 A A-A0)¶dA- -Mi-Z- ma ma ma Za

jd d N i NIZ N .,
-d e-pd-]dsmo

-d A-d rz1 0
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AV NIZ N 1/2 O)N-ZkZ.Z N/Z

2Zff Jw 2iwa k +T

'00 N *Sexp{- t E (v m-Asm)a expL' (A.A 0 )2JdA
S[ 2(ka_) M=- 1 2a•

Proceeding as in Case V the likelihood ratio becomes

- 4 d ]N/Z 2+k z1/21 N 2
AM" ,,<,,,> r 2 +'<e ] [- z •v m

2r(k=+o "a+k+a Zi m=i m

2 N *2 2A 0  N * A0
2

+ a 2 ( v s ) +- 2 z E v 8 ma 2
2(k2+o2)(k2+r2+a) m=im 2(k +0r +a2)m=i mm1 Z(k2+o +a2)

(19)

The optimum detector chooses H if0

N 2+ a2 N 2 2AO(k2+0) N *
- ] • v ( E - v m a + ksr 2 a E v a

m= 1 m k2+o- +a2 m=1 a kfoa M= 1 m ma

- > / (20)k2+a a2+w 2 6

The detector, as did the last one, measures the input energy, the

correlation of the input with the estimate, and the square of the

correlator output.
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An interpretation and extension of the previous results

will be presented in Part B but some superficial discussion of the

assumptions involved is in order. It in unlikely that some of the

suppositions will ever be met in practice. A Gaussian amplitude

distribution is quite improbable, particularly since it implies a

definite probability of the amplitude's shifting signs. Such a dis-

tribution also implies an a priori knowledge of the input. Case VI

is also suspect since a true Gaussian distribution about the

normalized estimate seems unlikely when the amplitude is variable.

However, Case VI can be somewhat justified by noting that it reduces

to the other problems in the limit of a -• 0 and/or k -- 0. It will

also be partially justified in the discussion of a graphical approach

to the problem. Therefore, the results of this section seem valid

in indicating the measurements which are required for the detection

problem. The coefficients of these measurements remain the weak

part of the discussion.

B. GRAPHICAL INTERPRETATION OF THE DETECTION

PROBLEM

In the mathematical approach to detection it was seen

that a signal was represented by N numbers. These numbers are

independent and can thus be pictured as components of a vector in

an N dimensional vector space. The detection process becomes

one in which the N dimensional signal vector (some components
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may be sero) is compared to the N dimensional input vector.

Detection occurs when the data vector appears in a specific

region of the space about the reference signal. These ideas

will become clearer as the previous six detection cases are

re -examined.

In the discussion to follow, only two of the N dimensions

will be shown. These two will be defined by the plane formed by

the data vector and the signal estimate vector.

Case I Detection of a Completely Known Signal in Noise

The problem is shown graphically in Figure I with the

signal and noise classes represented as circles. Although the

areas are shown as non-overlapping, there is a finite probability

that the signals and noise will be outside the boundaries and will

indeed overlap. The radius of the circle is large enough to

include some arbitrarily large probability that the occurrence of

S will be within the boundary.

NOISE SIGNAL

CLASS CLASS

FIGURE I BASIC DETECTION SITUATION
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The optimum filter was of the form

N *

m: 1 m ma (8

which is seen to require a calculation of the projection of the data

vector onto the signal vector

N *
E- V * = IV I IS• I con eM= 1I m

Detection takes place when

A

IV I coso >
is 1a

However, A

IvI cos 0 -

is the equation of a straight line perpendicular to Sa so the

optimum filter can be represented by the region shown in Figure

2. The choice of A depends upon the criterion chosen. Theai

data V would be detected as an example of Sa . Notice that this

filter will detect a very large signal which may be almost

orthogonal to S ; thus, the filter is not good for separating

waveforms.
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I

I DECISION REGION

FIGURE 2 DETECTION OF A KNOWN SIGNAL

Came II Detection of a Completely Unknown Signal in Noise

Here detection is based upon

E v > (i>)
m=i 2

Graphically this is shown in Figure 3. It satisfies the intuitive

feeling that if nothing is known of signal parameters, one must

search in all directions equally to determine the presence of a

signal.

IREGION

FIGURE 3 ENERGY DETECTION
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Case III Detection of a Partially Known Signal in Noise

The optimum measure for this problem is

SN N 2 N > (14

k +a r m= 1 m=1 3

which can be written

k 2 IV1 2 +21VIjSIj cosO > A (k 2 +0 2

If the S * direction is called the x direction, the filter

becomes

k-2" (x 2 + y') + 21Six > A (k2+a2

otherwise written

a'2IS:I1 2 2 a 2 2+ (U)
X+ + y 2 > 7 An (k + -1+.sT

k 2k a3 k C

which is the equation of a circular decision region. The graphical

representation of the filter as a function of I = o 2 /k 2 is shown in

Figure 4.

The filter has been proposed as an adaptive filter (2), in

which, after each detection, the value of k decreases and the weights

of the various terms are automatically changed. When this is done

and each detection is perfect k2 = rZ/1 where I represents the

number of previous detections.
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IgoI' 'I

FIGURE 4 CASE II ADAPTIVE FILTER

In operation the filter has no estimate of the signal

initially, I = 0, so detection in based upon vector length as shown

in Case 11. As I increases, the estimates of the signal parameters

improve and the filter approaches the matched filter of Case I.

Case IV Separation of a Partially Known Signal from All Others

In this case it was shown that H was chosen if

N 2 N * N *2

m=im mr~i sin 4C (16)

or, with S~ chosen in the x direction

(x 2 +Y2)2 Izs*:Ix + I* 12 <A(a CL A(



-31.-

which is the equation of a circle centered at x = IS* I as shown in

Figure 5. A vector lying inside the decision circle would be

detected as S

-
QN

FIGURE 5 DETECTION OF A PARTIALLY KNOWN SIGNAL IN
AN UNKNOWN ENVIRONMENT

In operation this type of filter would initially detect the

presence of S by means of energy and form an estimate S of0 0

the parameters. A rather large decision region (I = I circle) would

then be formed which would insure that with some larger probability

the next example of S would be properly detected. As the number0

of detections and the quality of the estimate increase, the radius of

the circle can be diminished without decreasing the probability of

detection.
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The filter poses two apparent problems. As was noted

before, the filter will fail to detect variable amplitude waveforms

which are not reflected in the estimate. Secondly, if another

signal S is located in the vicinity of Sa , it is likely to be detected

as S by this filter during the beginning of the process when the

radius of detection is large. Figure 5 also demonstrates another

point. If the repetition frequency of S is much larger than that

of SCL, it may become quite likely that S will be detected at I = i.

At higher values of 1, this becomes unlikely, but, if it does occur

early, the entire future operation may fail, because the estimate

stored in the filter will be a linear combination of S' and S• and

may never converge to either signal. These difficulties will be

reduced in the next two situations.

Case V Separation of a Known Signal with Variable Amplitude

from All Other Waveforms

Detection of S is based upon

N 2 a 2  N *2 2A 0 a N 2

m v + ( - vM. a + -27 v mm=I a +m m=i a +a m=i

A 02 T2>A

a 02 o-2

where
N *2

m•- s = tm=E e
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With S chosen to be a unit vector in the x direction the filter

become .

2 2A0r 2  AO2 2

22 a 2 02

2 2 A0-y- (x- >^
a+0 5

or

z 2 (x - A 0 ) 2 + y2 < - A 23)

which is the equation of an ellipse centered at A0 . The filter is

shown in Figure 6.

/ A0

\-sI
\ /

FIGURE 6 DETECTION OF A VARIABLE AMPLITUDE KNOWN
SIGNAL IN AN UNKNOWN ENVIRONMENT
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The filter can be interpreted in two ways. If the

amplitude of the signal truly has a Gaussian distribution, then

the filter is a fixed one as shown. If the amplitude in fixed and

unknown initially, the filter becomes an adaptive one in which the
2

A0 in the equations is actually an estimate, and a decreases as

the estimate improves. Finally, the filter would reduce to a

circle centered at the true value of A0 .

Case VI Separation of a Partially Known Waveform of Varying

Amplitude from All Other Waveforms

This is the most general case and reduces to all other

cases in the limit. Detection of the partially known signal S* is

based upon

N a2 N *)2 2A 0 (k 2+0r2 ) N

-v k ( m M k+22 z -i m ma
m=i k +(r +a m=i k +W +a m=1

(k2f 2+)O'
-> A (20)k2+w.+a c 6

where

N *2
Es =i

mu I ma
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With S chosen as a unit vector in the x direction the filter becomes
a

2 k 2 +o-2 (X )
-y - a (x - A0 > ^A

k 2+ 2 +a 2 0 C

or

2(x - A < -A (24)
k + k2+ 2 +a 2 0 Q6

which once again is an ellipse centered at A0 . The filter is shown

in Figure 7.

-

/ ~A0

k S*

FIGURE 7 DETECTION OF A VARIABLE AMPLITUDE
UNKNOWN SIGNAL

It is seen that the optimum decision region under the

given assumptions is an ellipse whose size decreases as the

number of detections increase. A more thorough discussion of

these results will be presented in the next section.



-36-

C. EXTENSION TO UNIFORM AMPLITUDE DISTRIBUTION

Unfortunately, little of the discussion which has gone

before is of specific help in the problem being discussed. It is,

however, useful in that it agrees with intuitive notions and thus,

to some degree, justifies the extension of these notions. An

extension of the theory from Cases III and IV will be undertaken

here.

As stated before, one of the main difficulties with the

derivation springs from an unrealistic amplitude assumption. The

Gaussian distribution will now be dropped in favor of a uniform

amplitude from Amin to A max, which will be considered the worst

case. A mathematical derivation of this filter is difficult, but it is

felt that Figure 8 is a good representation of a filter which separates

a known waveform of variable amplitude from any other waveform.

It can be arrived at by arguing that if the distribution is uniform,

all amplitudes should be examined equally. However, each ampli-

tude is examined by means of a circle centered at that amplitude

and this leads to Figure 8.

If the above reasoning is extended to the case of a

partially known waveform with uniform amplitude distribution,

the filter should be as shown in Figure 9. The same argument

applies here except that the radii of the circles depend upon the

degree of uncertainty in the signal parameters.
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Amin A mox\

-s*
a

FIGURE 8 UNIFORM AMPLITUDE DISTRIBUTION FILTER FOR
KNOWN SIGNALS

lei

A Amin mox N

s +
a

To-C 00,

FIGURE 9 UNIFORM AMPLITUDE DISTRIBUTION FILTER FOR
PARTIALLY KNOWN SIGNALS
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If it is now stated that the final filter must separate a

partially known waveform of variable amplitude from noise and

other possible signals, the solution will be a combination of

Figures 9 and 4, and is shown in Figure 10. The dimensions

will depend upon the decision criterion used.

i-0

1-01

FIGURE 10 FINAL ADAPTIVE FILTER

The filter is not easy to instrument because it would
N *

require powers of E vm ama greater than two for its

implementation. Various conic sections can be considered as

approximations to these filters. An ellipse is an obvious

approximation. A parabola also could be considered even though

it is open ended. This merely means that the filter will pass

very large waveforms and is identical to assuming Areax - co.
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A hyperbola can also be used with the center at a large negative

value of x so that the right half of the hyperbola is the only one

of importance in the detection operation.

Any of these conic sections can be represented by an

equation of the form

Ax2 + Bx+Cy =K (25)

which in terms of the measurements to be used becomes

N N *r2 N N 2*N2
A( E v s +B( v s ma)+C E v 2 ( E v S K

m=i md m Lm=m m=1 m

N *)2 N * N 2
(A-C)( v s) +B v Msm +C E v = K (26)

m=i m= m m=i

where
N *2

m=1 ma

For an ellipse C < 0 B > 0 A < 0

For aparabola C < 0 B > 0 A = 0

For a hyperbola C < 0 B > 0 A > 0
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Thus, one sees an indication of how the desired filter

can be implemented by using the measurements required for Cases

V and VI. Notice also that one of the approximations is just the

ellipse which was derived in those situations; however, there is

no specific rule for the values of the coefficients as a function of

the noise and uncertainty in the parameters.

It is easy to visualize approximate values for A, B, and

C and reasonable rules for their variation throughout the detection

process, but the validity of these rules is not known. The experi-

mental investigation of filters with decision boundaries given by

N *2 N * N z
a(1)( E v m s) +b(1) E v ms +c() E v = F(1) (27)

m=i m=i mm m=i m

N *2
-s =

where I represents the number of past detections, will be presented

in Section V. The above form includes all six cases previously

discussed.

D. THE LINEAR ADAPTIVE FILTER

One other filter which has been widely discussed in the

literature (3, 6, 7, 8) will be investigated in modified form. This

filter determines the presence of a waveform by measuring con-

tinuously the correlation between the input and the memory. When
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the threshold is exceeded, the output of the filter in weighted and

added to the previously existing memory to obtain a new estimate.

Initially the threshold is set very low and noise is stored in the

memory. When a signal appears at the input, there is a certain

probability that the correlation will exceed the threshold. Once

thls occurs, the threshold is increased and a signal estimate is

obtained. The memory has decay so that, in theory, initial in-

correct detections will not continue to prevent true detections.

The detection process is shown in Figure I1.

Several features of the graphical representation should

be discussed. The M vectors represent the stored waveform in

the memory before the (I+i)th detection. The figure also is

presented with the assumption that each detection represents an

improvement in M, but this is not necessarily true. Also the M's

are shown in one plane when in reality they are in different planes

of a hyperspace. The initial detection requires at least some

component of the memory to be in the S direction or the convergence

process will not begin. With no component in this direction, it

seems likely that the filter will continue to detect noise with a

corresponding wander of the memory vector until some component

lies in the signal direction. The filter then may begin to operate

properly.
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FINAL

SECOND DETECTION

DETECTION I

FIRST I
DETECTION MW i

I
I

FIGURE 11 INTERPRETATION OF THE LINEAR ADAPTIVE

FILTER
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The version of the above filter which will be studied here

has the following modifications:

1. The initial detection will be on the basis of energy

rather than correlation with noise.

2. The threshold will no longer depend upon the previous

correlation peak.

3. The threshold will not change between detections.

4. All data will be weighted equally in forming the

estimate s.

These modifications lead to a filter with a decision

boundary given by

N ,
. vms =A (28)

m=1

Notice that the filter is just an approximation to Case III for large L.

The observer uses the estimate as if it were exact rather than having

a degree of uncertainty. It may also be viewed as a filter matched

to the estimate instead of to the true signal.
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III. THE COMPLETE FILTER SYSTEM - A DISCUSSION

A. LIMITATIONS ON ESTIMATE QUALITY

The equations of the previous section provide the guide

for the analysis of unknown data by adaptive filters. A complete

system may be separated into three distinct operations:

i. Determining that a signal is present (detection)

2. Determining the relevant parameters of the waveform

(e stimation)

3. Utilization of the new parameters for future improve-

ment (adaptation).

The process of estimation and the use of the estimates will be

discussed here. In studying the estimation and adaptive operations,

the assumptions of Section II will be re -examined. The assumptions

are found to be poor at low signal to noise ratios; however, no

alternatives will be offered.

Glaser (2) has discussed the problem of estimation under

the assumptions of Case II and Case III. The optimum estimate,

under a variety of criteria, with no previous knowledge of the signal

is the input at the time of detection. Assuming a Guassian distribu-

tion of the estimates, the estimate of the mth coefficient following

the Ith detection is

"* k]" i-i] v, m +. 2
aML 1] = 2 m-L1 (29)

a~ +k _1]
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where

F[] value of v at the th detection

k2V - ] = valuane of v h a stimt e the .1-~t detection

k2 '[I-'] =variance of the estimate after the (1-1) th detection

E~a Ika * I =

Vara* [1]}= k'[1],

Since the first estimate was merely the data

Sm*' vm1

k[] 'N a"z k [Z] = U-2/ 2

k ' [I] 0-2k[ (30)

Thus, the quality of the estimate does improve as the number of

detections increase. The estimate can then be written

S= { ]]

IT- 11 vin'-_' .... v[,}1 + ,,
I Ivm[,],+vE- ] + [I (1
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The optimum estimate is then the average of all data samples. In

other words, all estimates are weighted equally in determining the

final estimate. In the analysis, it is implied that the time of arrival

of the signal is known exactly and that the process of making a

decision does not affect the post-estimate distribution. Unfortunately,

neither of these conditions is correct.

The quantity vm is a measured value and, as such, is

subject to certain errors. One error arises because the measure-

ment must be made at a precise time

N N
v(t) = .v f r(t) s(t) = E sm flo(t)

m= mm m= m
T

m= s(t) fmo(t) dt (32)

0

but s can be obtained by passing the signal through a filter with an

impulse response

f m(T - t) 0 !g t g T

T
r(t) = s(t-,r) fro(T-T) dr

0
Letting

u = T -"

T
r(t) = s(t-T+u) fm(u) du (33)

0

it can be seen that r(T) = sa.
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However, the decision that the coefficients should be read out is

based upon some measure of the data. At the time chosen, the

outputs of the orthogonal filters are vm by definition. Because

of the presence of noise, the readout time tR is not, in general,

equal to T and the expected value of vm is not sm. There will

be some distribution of readout time error y, and

E Is} *= ;T jo D(y) s(y+u) fm(u) dy du .(34)

0 -00

The final estimate (after an infinite number of detections) is

s *(u) =O D(y) s(y+u) dy (35)

-00

The final result is not s(t), but it is the convolution of s(t) and the

readout density function D(y) [see also (6)]. In terms of sample

values (where the sampling rate is synchronous with the repetition

rate)

E{sm [i]}= [ [N 0 Sm + N, m+ +''"

+ N.- 1sm.• + ''

N N
Ef*F]} E D. mi E D. 1 .(36)

m Jr3=-N J m+j' j=-N 3

-. m L. S &.
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In review, the assumption that v has a mean of sm holds at one

time tR only. The expected value of vm is sm only if all detec -

tions occur at the proper time which leads to D(y) = 6(y) or Do = 1.

Thus, there is a limit to the accuracy of the estimate which depends

upon the ability to determine the proper readout time.

It appears obvious that the optimum D(y) or D. for useJ

in parameter estimation is the one with the sharpest distribution

about the true time. The problem becomes one of maximizing the

probability of detection at the correct time. Figure 12 illustrates

how the problem may be approached. Figure IZ(a) represents a

signal and Figures 12(b-f) represent the various parameter

estimates which are obtained for different choices of tR* It is

apparent that what is really desired in readout determination is

the separation of signal - Figure 12(d) - from the other four. Thus,

readout can be considered as a multiple detection problem where it

is to be decided which of 2N-i waveforms (2N, if the null signal is

included) is present.

Using the elements of decision theory leads to the

construction of decision rules of the form

A(V) = FNVS)s > A (4),(3)(FN(VISP))s

where S represents time displaced versions of S a
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T1 T I T3  T4 T5  t.UT1 SaJ'o.O- I
INPUT SIGNAL

(a) (b)

t "T2 S'!{0,I12} t2uT, Sm'{I.2,.}

(c) (d)

I a a a

tR 4. t2.3T0 ST-{3.O.0}

(E) (f)

FIGURE 12 ESTIMATE VARIATION WITH READOUT TIME
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By making the same assumptions as for Case III, Section IH, H isG

chosen if

[N/ N [2
1 exp[- 1 (V - 8*) I

A(V) 2w(k +ra-) Z(k2 + ) m=I > A (37)> N 7 N *+ j 1

(2+(k ++a ) m-I m+Jk

or

N * N * N *2 *2
2Z-v Vm 2m Z-v m m+j>2(k2 +Wr2)InA+ mE (am * m+j )" (38)

The values of AP8 depend only upon the costs assigned to the errors

since the probability of occurrence of all signals is the same. A

graphical representation of this situation is shown in Figure 13.

It should be realized that while this type of measurement

provides the optimum timing measurement, it is difficult to

instrument for moderately high dimension signals. A reasonable

approximation to the decision region of Figure 13 would be a parabola

centered about the estimate. Thus, the filter developed for detecting

waveforms in an unknown environment can also be used to provide

good timing information.

The costs of more accurate identification of tR are two-

fold. The probability of detection is lowered because of the decrease

in the acceptance region. The more important effect is the increased

reliance upon the quality of the first detection. By narrowing the



J=2l

SREAD OUT
"DECISION REGION

J'-I '

FIGURE 13 READOUT AS A DETECTION PROBLEM
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decision region, succeeding detections are going to depend greatly

on the first estimate. All detections will occur with about the same

time error as the first.

The fact that decisions precede the estimation process

leads to another basic difficulty with the problem formulation. The

estimation procedure is accurate (neglecting now the readout error)

if it is known with certainty that a signal is present. If the presence

is not known, then a detection decision does two things; it eliminates

some examples needed for an accurate estimate and, secondly, it

allows false alarms to be accepted as signal examples.

As an example, consider that a linear filter is used for

detection. A detection decision is made when

N *
. v s > A (39)

m=t m m

and at the same time a new estimate is made

new s =v
m m

Assuming a signal is present

V z m + n
m m m

N * N *
E v 9 = (s +nm) s > A

m= mm m= I m

N * N *
Sn s > A- E s s (40)

M m m min m m
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Letting

N *
x = E n a

m=1 m nn

we have before detection

p(x)= i exp -... 12 )
2  *2 2- 2 E

Zn m=i

and after detection

2
exp N *2

20- E aN
rN *

A--E 2T E 8

N *:0 x<A- E•- s
m=i m m

But (42)

2 "N2  *2 N m 2 N 2]2di •Pd(s)
ZfW A Esa 2a-ZEga

I == m(43)

P d(s) = the probability of detecting S
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The expected value of x after detection

E tx t ep x2
N *2)1/2 N 1x N *2

P(Zir Eu ) A- E s 2o-2
d m=m m=1 m

N *2 1/2 N *2
2 •Es (A-E mSm)

( 1 (44)c "Ld [• e -p ý 2
2O. 2 E 8

I m

N *
Equation (44) is the bias of E n a . Thus, after detection, the

Imm
noise has a bias with a component in the direction of the old

N *
estimate. As s a increases, Pd increases, and the magni-

1 mm
tude of the bias decreases. Therefore, at high values of signal-to-

noise ratio the bias is unimportant. Two cases are shown graphical-

ly in Figure 14. Figure 14(a) shows the expected value of the

estimate for a correct detection and Figure 14(b), for a false alarm.

The question now arises as to what effect the estimate

bias has upon the operation of an adaptive filter. The expected

value of the data (at correct time) is no longer the signal, but

E{V} - S +qS* (45)

If estimates of equal value are desired, new data must be weighted

more heavily than old data due to the occurrence of the bias term.
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//

(0) BIAS IN TRUE SIGNAL DETECTION

E{v AFTER DETECTION)

(b) BIAS IN FALSE ALARM DETECTION

FIGURE 14 GRAPHIC INTERPRETATION OF DETECTION BIAS
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The argument against weighting new data more heavily is that it

may be the result of a false detection. Notice that in the case of a

false alarm, the bias actually has some merit. For a false alarm

E{V} = rS* (46)

and the new data do not affect the total estimate drastically. If

the post-detection noise were truly random, the deterioration of

filter estimate could be severe. Similarly, if another waveform

were identified as S, the bias would make the decision less harm-

ful to the estimate. On the other hand, true detections show less

improvement. Overall, it appears that equal weighting of the data

is still the best procedure.

The preceding discussion illustrates that the assumption

of Gaussian estimate distribution is unrealistic at low signal-to-

noise ratios. However, the results obtained appear useful. The

use of more precise distributions W(S) does not appear feasible.

B. EXTENSION TO MULTIPLE SIGNALS

Some work has been done on separating partially known

waveforms (9), but it is necessary to retreat one step and

determine how the observer can obtain even partial knowledge of

the second signal. The main difficulty in multiple signal detection

arises from the fact that the detection process is not stationary as

the equations imply. The problem may be illustrated by Figure 15.
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SIGNAL So
V2  DECISION REGION

,pDETECTION REGION

N--V-NOISE 7". . . . .. .

NONLY

FIGURE 15 DIFFICULTIES IN INITIATING SECOND FILTER

Here, it is assumed that S has been detected and a decision region

has been defined about the estimate. Any new waveform present in

the input would be optimally detected by means of energy if it did

not fall within the Sa region. Data vectors V1 and V 2 , which are

slight time displacements of the same pulse, may be used to show

that the problem is not stationary. The data may be an example of

S in which case it would be detected properly at one time. At aa

slightly different time it would be detected as a new waveform. If

the data were S•, the same situation might arise. In other words,

the observer might decide two waveforms were present when, in fact,

only one was. If VI and V 2 both lie outside the Sa region, a new

detection is unambiguous.
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In view of the above discussion, a rather arbitrary

criterion has been chosen for determining the presence of a second

waveform (only two will be considered). The criterion is based

upon the assumption that the S filter provides more information

than the energy alone. Consequently, a new signal is detected if

and only if there is no detection from the Sa filter during the

interval that the energy threshold is exceeded. As a result, a new

waveform will not be recognized if it is incorrectly detected by the

first filter. After the first detection of S•, the two filters operate

independently.

It is of interest to examine graphically the expected

operation of a number of filters in an environment of two waveforms.

Figure 16 shows three basic configurations which will be studied

experimentally. In each case, the filters are tuned to S and the

effect of another waveform S is of interest. Generally, it would

be expected that the parabolic filter would be affected least while

the Case III filter would be affected most by the presence of SP.

Both the linear filter and the Case III filter may exhibit a tendency

to switch to S if the rate of occurrence of S is high. In the

absence of S,, however, they should be superior to the parabolic

filter. These intuitive results will be verified by the experiments.
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I

(o) LINEAR FILTER

(b) CASE M FILTER

(c) PARABOLIC FILTER

FIGURE 16 COMPARISON OF BASIC STRUCTURES
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IV. NUMERICAL ANALYSIS OF SOME ADAPTIVE FILTERS

The present section will attempt to assess the operation of

some adaptive filters in numerical terms. The discussion is

limited to high dimensional signals and to two of the filters previous-

ly described. Similar treatment of the conic section filter is quite

difficult and is not included. The section is included for three

reasons:

1. It demonstrates the expected operation for N large (cases

which will not be studied experimentally).

2. It demonstrates parameter effects which are expected to

hold for low values of N, thus providing a guide for

examining the experimental results.

3. It includes derivations of some of the parameter values

used in the experiments.

The analysis is based upon the ideal assumptions of Section U1.

It should also be noted that the probability of detection calculations

are carried out only at the correct readout time. There is also the

possibility of detecting the pulse at a slightly different time while

missing it at the correct time. Thus, true detection probabilities

are somewhat higher than those given.

The initial step of the filter procedure is the detection of the

first signal. Under the conditions of Section I, the threshold must

be determined on the basis of allowable false alarm rate a. The
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dimension of the filter, N, must be chosen on the basis of some

intuitive judgment. Once N is selected, the threshold is chosen

by assuming that

N N z
E v E (sm +n)

m=1 m m= m

has a Gaussian distribution. For N > 100 the assumption is fairly

accurate (10). All n are independent with a mean of zero and a
m N

variance 2r . In all calculations to follow E will be written as E
m= 1

E{ 2  } = v E 2a + N 2  (47)

Var{•E v2 } 4a_- 2 2 + 2+Ncr 4  (48)

Then, the probability of a false alarm is

2
a = 1 0 dexp x(x-Nw2 dx%/N4 A4N4 r d

2 exp [ y2 ] dy (49)
OF A -No-

The observer can determine the value of A which yields the desired

false alarm rate a.
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The threshold A becomes

A = 2- 2 A 1W + Nw2  (50)

2which depends upon o- , a known value, and upon A and N, chosen

value s.

With the threshold chosen, the probability of detection becomes

II

OT.% E+ sN+oN', Arwwv'!W-Es2 s_+Mo

m

Now, the signal -to -noise ratio R is defined as the signal energy

divided by the noise power per cycle (-W< f < W) or

f0 s2 (t) dt

w /2W

or in terms of sample values

A 27 E

R m

w-2/2W
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where At = 1/2W is the sample interval

Es
2

m (53)
0"

Equation (51) becomes

Pd do exp[-y 2 1 dy (54)

%/f A V!-R/ 2

Equation (54) illustrates the obvious result that an increase in R

produces an increase in the probability of detection. For a fixed

R, an increase in N lowers the value of Pd" Figure 17 demonstrates

the effect of N on the detection probability. The implications of

Figure 17 are several:

1. For the same energy, high dimensional waveforms are

more difficult to detect (by energy means) than low

2. A poor choice of N (N >> signal dimension) may reduce

severely the observer's chances of detecting the waveform

3. If more were known about the signal class (for example,

signal bandwidth less than noise bandwidth), better results

could be obtained with fewer measurements.
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Another technique for determining the presence of a waveform

has been proposed (3). It is based upon the correlation of the input

and a random waveform exceeding a threshold. A threshold may be

chosen by assuming

E-M v =EM (s +nM)

has a Gaussian distribution which again only holds for N large (12).

M is a Gaussian random variable of zero mean and variance k2 .
m

E{EMmv}m = 0 (55)

Var E Mmvm m (56)

The probability of a false alarm is

1~ x 2
CL J•o exp I.-2N 2k dx

/2• N 2 k2o k

i 00 exp [y 2 ] dy (57)

A

V~2
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and the probability of detection is

P2 2 2 • j exp -x dx
d Z2(NT k 2+k2 Es I Z(NorZkz+kzEs 22-/7( k'•22 +2 ksm)r)

1 00° exp [-y 2 ] dy (58)Trv A

Figure 18 illustrates the characteristics of the correlation detection.

A comparison of Figures 17 and 18 clearly demonstrate. the

superiority of the energy detection. In use, however, much higher

values of a are used until a signal is found. In other words, false

alarms are not considered a problem until a reasonable waveform

estimate is obtained. The correlation approach also eliminates the

need of much squaring circuitry.

Each of the above approaches chooses the readout time at the

peak of the filter output. The peak corresponds to the maximum

likelihood ratio for the detection decision. At the readout time,

the first estimates are recorded.

Once the first estimate has been made, the general filter to

be studied in this section takes the form

c()Evm2 +bi(j) Evs F(s) (59)c1 m m

v =s +n , s =e +km m m m m m
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where nm and k are independent random variables of zero meanS m

and variance a2 and k2 respectively. Again, assuming N large,

F(1) approximates a Gaussian distribution (10), (12).

S} ~~2 ÷N2) b• •(0
E F(1)} = c(Esm- + N ) +bjE e (60)

Var(F(I)d = c 2 (4or2--. 2 + 2Nr 4 ) +blc4o•rEs em 1 mm

+ bi2 (r 2 e 2 + k2 2Es Z +Ner2k) (61)I m m

The probability of false alarm is

Iai

VZ-2¶rc 2ZN~r 4+b 2 (.2 e 2+ No-2 k 2 )

ix: - cNo"4)

00 Z 2N= +b 1 " ( Z N e Z +Nw 2 )

A=

/ZIc2 2Nr 4 +bl(Or2 Ee 2 +N. 2k 2 )1
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and the probability of detection is

p d. .I O exp[.y 2 ] dy
2 [c 2 2NO4 +b 2 (or2E e + Nor2 k 2 ) - c E sa - bjE smem

V2[c2(4 2ZEs 2+2Nr 4) +4b co-2 Es e +b"2(r 2'Ee 2 +k2 s 2+NirkY

(63)

There are now two situations which are of interest and can be

examined by means of Equation (63). The first is the linear

adaptive filter in which c = 0 and bi = i. Then

P = O /-( exp y2] dy . (64)
S(•~~r 2e e2+No-2k.2)_•sie

VC2(0r_2e 2 +No 2 k2 +k2Es 2
m rn

2If the estimate mean is the signal, sm = em, and k2 = /I

Pd =exp[-YJ dy (65)
A /-+i -R A72

fN+R(1+i)

Turning now to the Case IMl filter and letting c = I and bi = 2

"d .IJ exp oy21 dy

"A 4No" 2 +1 2 (wZ2"e 2 +N02k 2) - E s- UEZs em m m(66)

V2(41'2+2No o2 E me+412 [r2 Ee 2 +k 2 Es2 +Nr2 k 2 ])
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Figure 20 shows the probability of detecting the second waveform

as a function of I and the correlation between the signals. The

curves are plotted under the assumption that the expected value

of the estimate is S . The optimum filter, Case I1, is the best

at detecting SC, but, unfortunately, it is also the one which is most

likely to incorrectly identify other pulses. If the new waveform

had a larger energy, there would be an even greater probability

of incorrect identification.

The previous discussion was concerned with the performance

of filters on the average. Here, it is of interest to examine the

filters in terms of the measurable quantities {sm * In the follow-

ing discussion s is a constant between detections.m

F(I) = c(.) E v 2 + b (1) E v a (59)F~~tM I ():v m m

Again F(l) is assumed to be a Gaussian distribution for N large.

Ej1F = c S ( m2 + Nr 2 l) + biE am m (69)

Var {F} = c2(420asm
2 + 2Na41 +4b cEsmsm*+b21 0 Elm*2

(70)
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The probability of false alarm is

22

10exp -(x-cN•r) dx

2 (c 4 2 2 *2 A 2(c 2N. +b2a Es )

= 2 exp .-YI dy (71)

A - cNo.2

4c 2Nr 4 + 2bo z- 2 E s

2 4 2 *2 2
A2 A (c22NO4 + b1 . s ) + cN(. (72)

Equation (72) provides a means of calculating threshold setting in

terms of arbitrarily chosen constants A, N, b1 , c, a known constant

2 *2
T , and the measured value Z s

For c = 0 b-

A =A 2a Esm (73)

For c = i b 4 = 21

A = A V r4N+88a 22E. am +NT 2 (74)
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The I term in Equation (74) represents the number of past detections.

The above choice of I is predicated upon perfect operation of the

filter. Therefore, any error of commission on the part of the filter

will result in an incorrect threshold level and a deterioration of the

optimum performance will result. The probability of detection

becomes

P d f O exp[-Y 2 1dy . (75)
2 4 2 *2 2 *A (c22Nr 4 +b 2r 2 .S ) -cs c sm

2 [ m m nt mm./z2 [c 2 ( 4, 2 •'s 2 +2Na4 ) +4blcE. Sm5s:b2,2] sr]

Equation (75) illustrates that for fixed waveforms and estimate

(between detections), the important factor in determining Pd is

:s s s m cosoM" Sm m m

The significance of the cos 0 term makes it a good measure of

quality for the filter.
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For c = 0, Equation (75) is exact for any value of N. In this

case the probability of detection is

, exp .-y2] dy
i/- .s s

A- m m

m

exply 2 1dy (76)
A. --_ coso 0

Thus, for the linear filter, Pd depends only upon R and the

correlation measure, coo 0. Curves of Pd versus cos 0 for

various values of R are given in Figure 21.
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V. EXPERIMENTAL RESULTS

The main purpose of the paper is the experimental study of

the use of adaptive filters for examining unknown data. To this

end, an extensive analog and digital computer investigation was

undertaken to determine the characteristics and limitations of

several systems. Prelminary tests were made with analog equip-

ment to obtain qualitative indications of performance. The large

amount of equipment involved and the approximations necessary,

limit the usefulness of the analog results. Consequently, they

contribute little quantitative insight into the filter operation. All

data presented here are the result of the digital computer simulation.

For purposes of simplicity and time saving, the computer

performed all operations including the generation of the waveforms

and noise. For the most part, the experiments were performed

with two waveforms Sa and S, present. Figure 22 illustrates the

two waveforms which have slightly different lengths. The waveform

lengths were selected to be close to the filter length which was

chosen to be N = 10. To illustrate the effect of a poor choice of N,

a few trials were made with other waveforms of varying dimensions

which are also illustrated in Figure 22. The waveforms used were

invariant in shape, throughout the trials, corresponding to the

sampling of analog data with a sampling frequency which is synchro-

nized with the repetition rate. Appendix B provides -some results

for true samplings of analog data. Another simulation has been
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carried out on one type of filter (8) in which the results from

sampled analog data were quite similar to those from computer

generated samples. The amplitudes of the waveforms were

usually chosen to provide signal-to-noise ratios of 5, 10, and 20.

The noise samples are numbers from a computer table of random

numbers. The table approximates a Gaussian distribution and the

samples are independent with zero mean and unit variance. An

example of the data processed by the computer is given in Figure

23. Although the data are really represented by sample points,

lines have been drawn between the points for clarity.

The waveforms occurred with fixed intervals for convenience.

In general, Sa occurred every 50 intervals, S every 100 intervals.

Most trials were limited to an examination of 1000 sample points

although a few had a duration of 1500 or 2000 intervals.

At each sample point p the computer was programmed to

calculate F (1).

10 10
Es +M~ E v sM11M 1m4 Vp+m-4O m m= Vp+m-iO m 40

F (1) = a(l) + b(1) m=1 + c(l) E v Z
p 10 *2 40 *2MCI p+M-40

m=1 m m=. m

(77)

where I is again the number of past detections. In other words, at

every point, the last 10 data samples form the vector which is

examined. The processing is analogous to using a tapped delay line.
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The normalized estimates of Equation (27) are made explicit in

Equation (77). The number F is compared with a threshold and,P

if it is below the threshold, Fp+1 is calculated. At some time the

point p' will be reached where

Fp, > A and FpI < A . (78)

Then, the computer goes to a subroutine which sequentially examines

the interval p' ! p < p' + 1Z. At time p' the data values IVp,,

S"91 are stored. Each successive Fp is calculated until

Fp,+j > Fp, j <2 . (79)

If this occurs, the memory is replaced by {Vp,+j, VpIj _0 ... Vp,+j.91.

If another value occurs,

Fp,+J+i > Fp,+j j + i Z (80)

the memory is again replaced by the appropriate data. At the end

of the twelfth Interval, the time of the largest F is recorded, I isP

increased by one, and the data {vP, Vp.i... vp. 9 are added to the

old unnormalized estimate a 9 .. ••. s8* . At p1+13 the com-

puter returns to the routine of determining Fp and comparing it

with the threshold. The interval of twelve was chosen to prevent

more than one detection of any pulse. At each time of detection,

the data and the new estimates are printed out.
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In the case of parallel systems and F and an Fp8 are

calculated using S a I , and SO, P, respectively. In other words,

each system uses the basic equation with different estimates and,

in general, with different numbers of past detections. The one

new feature arises in determining the first detection and estimate

of S The problem was discussed in Section 1II-B. The solution
P 1040

used here involves calculation Fpa and E v 0
m=i p+m- at each point

after an initial detection of S . At a time when
a

10 2 2

m=1 p"+m-10 > A

10
.• •" 0 < A (81)

m= p"-1+M-40

and

Fp"a < Aa

The computer goes to another subroutine which sequentially examines

the interval p" ! p ! p" + 16. If, at any time during this interval,

Fpa > Aa (82)

the computer returns to the main routine. If, however, at each point

of the interval

Fpa < A a (83)

the energy peak is determined and the data at that time are used as

the first estimate of S The computer then returns to the main

routine and calculates Fpa and Fpp
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The general form of Equation (77) allows all filters previously

discussed to be studied by a change of coefficients. It was convenient,

because of the time involved in compiling the program and data, to

process the same data with several filters. Use of the same input

is also helpful in comparing the systems. A subroutine was, there-

fore, employed to change the parameters after each pass through

the data.

Some of the parameter values are obtained from previous

equations, some are the result of guesses based on early analog

and digital work. The basic structures which will be examined are:

i. Case II filter (I= 0, a = 0, b = 0, c = i)

All systems to be studied have 'his structure for I = 0.

The approximate value of the threshold (N large) is

A -9!!"2(zA -IN+ N) (50)

Choosing a false alarm rate a = 10-2 leads to A = 1.645.

A 11 !- O.25 . (84)

Equation (84) is approximate, but Turner (6) supplies a

table with the true threshold which will be used in the

experiments

AH- 23. 2 (85)
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2. Linear filter (I 1i, a = 0, b = 4, c = 0)

Detection is now based upon

N ,
E. v s

m=4 m m
N> AL (86)

s

=1 m

or
N * N *2

. E >AL • s = A (87)
m=1 m m m=i m

From Equation (73)

A - -N ,2

A=A 20 E 2 (73)
m=1 m

or

AL= A V/7 . (88)

Choosing

L= 10-2

gives

AL = 2.33 (89)

N *2
3. Case III filter (1 > 1, a = 0, b = 2 s , c = )

m= I

Detection is based upon

N 2 N N
E v E+2 E v s >A M (90)

m=I m4 m m m(9
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The filter takes the form of Equation (90) because the

estimate In the computer simulation is merely the

unnormalized sum of the past data. In other words,

assuming perfect detections

E{S*} = .IS, . (91)

From Equation (72)

AI = 4NA 4 +84r2m•. Sm + N 2

= 1.65 40+8E *2 +0 . (92)
m=1 m

4. Parabolic filter (I k 1, b = 1, a = -c)

Of the conic sections, only the parabolic form was

chosen for study. With no analysis of the filter, it

was necessary to make intuitive judgments about the

parameter value. Generally, it can be said that the

larger the value of a, the narrower the decision

region. Tests were made with wide, narrow, and

variable width regions. In some cases, the threshold

was chosen as a constant at the same level as that for

the linear filter. In other situations, the threshold

was reduced slightly as a function of 1. It was thus

insured that a would be no greater than 10.
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Table I describes the parameter rules governing the six filters

examined.

TABLE I

Description of Filters Examined

System I a b c A

1-6 0 0 0 1 23.2

I >1 0 1 0 2.33

N N0 1 i.6 0+8
2 2!1 0 2 1 EsJ08E 1

"m=I m

3 >1 1/23 1 -1/23 2.33

4 •1 1/8 1 -1/8 2.33

5 1i 1/23 1 -1/23 2+

6 >I (31+40)10O3 1 -(31+40)10"3 2 +

The value of a was purposely chosen to be high since

the effect of false alarms on future operation has been largely

ignored. By electing to observe numerous false detections, the

effects can be better assessed. It should be stated here that a

detection was identified as false only if all samples IVp, ... vp. 9 }

represented noise alone. Thus, if the output of the filter was, in

any way, due to the presence of a signal (even one sample of

signal), it was called a detection of that waveform.
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The experimental results are presented in three basic forms:

1. Tables of errors and correct decisions

The number of false alarms,. correct detections, incorrect

identifications (identifying S as Sa ), and missed signals

provide the gross results of a trial. Correct detections

are those signals corresponding to the first signal

detected.

2. Plots of estimate quality versus time of detection

The plots represent the peak of the cross correlation of

the signal with the estimate, in other words, the largest

N *E.sij sm=E m+J m
r

N 2 N *2
( as Z)( s

m=i m m=i m

The correlation was seen to be a good measure of the

estimate quality. These figures provide a good indication

of the effects of false alarms and incorrect identifications.

3. Illustration of the estimate as a function of I

The figures are plotted to correspond to the impulse

response of a filter matched to S . In other words, they

represent the time inverse of the signal estimate.
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The experiments themselves were designed to demonstrate

the tendencies and limits of the filters under a wide variety of

circumstances. On the basis of preliminary tests, it was felt

that filter operation deteriorated rapidly for signal-to-noise ratios

below 5. The operating characteristics were determined at the

preassigned limit (R = 5) by making 48 trials with each system.

Each run contained 19 examples of S (Ra = 5) and 10 examples

of SP (R• = 5). Table II gives one picture of the results.

TABLE II

Result of 48 Trials (R. = R = 5)

System 1 2 3 4 5 6

False Alarms 156 159 66 30 122 106

Correct Detections 285 310 190 75 238 207

Missed Signals 319 294 414 529 366 397

Detection Percentage 47 51 31.5 12.5 39.5 34

Incorrect Identifications 129 162 62 8 90 71

Incorrect Detection Percentage 27 34.5 13.2 1.7 19 15

Detection percentage =

number of signals detected similar to first signal detected
number of signals available similar to first signal detected
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Incorrect detection percentage =

number of signals detected which are not similar to first signal detected
number of signals available which are not silmilar to first signal detected

As stated before, it was not possible to calculate the proper

thresholds for the parabolic filters. Table UI, however, offers a

comparison of the relative false alarm ratio for the thresholds

chosen. Systems 1, 2, 5, and 6 have fairly high rates and can be

compared directly. The other two have fairly low rates and must

be compared to the linear or Case MI filter with higher thresholds.

As expected, the first two systems in a multiple signal environment

detect the most waveforms, both correctly and incorrectly. It

should be noted, however, that an increase in the thresholds of the

first two would decrease the number of detections, correct and

incorrect. The conclusion, without experimental verification, is

that it is difficult to tell the difference between Systems 1, 2, 5, 6

at low R and equal false alarm rates.

A more useful picture of the results can be obtained from

Table III which illustrates the convergence tendencies of the filter

estimates as a function of the first detection.
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TABLE M

Convergence Tendencies of the Estimates

System 1 2 5 6

Number of Initial S Detections 26 26 26 26

Initial S Detections Converging to S 22 22 21 20

Initial Sa Detections Converging to S• 0 0 0 0

Initial S Estimates which Improve 16 14 11 14

Number of Initial S Detections 11 11 11 11

Initial Sp Detections Converging to Sa 1 1 1 0

Initial S Detections Converging to S 5 5 4 4

Initial S Estimates which Improve 1 2 2 0

Number of Initial Noise Detections 11 11 it 11

Initial Noise Detections Converging to S 3 3 3 2

Initial Noise Detections Converging to S 0 0 0 0

It is seen that S was the initial detection about one half of

the time, and S about one quarter of the time. Convergence was

arbitrarily assumed if the correlation between the estimate and the

signal exceeded 0. 5. The estimate was said to improve if the last

correlation was greater than the first.
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It appears that if S (the predominant waveform) is detected

initially, it is quite likely that the estimate will converge to S.. An

example of the convergence process is given in Figure 24. In this

example, the estimate improves rapidly until a few errors are made

which cause some deterioration of quality. If the initial detection

is S P (low frequency waveform), it is much less likely that it will

converge. It is probable that the estimate will deteriorate com-

pletely, but there is also the possibility of convergence to Sa . The

possibility also arose of a false alarm initiated estimate converging

to S . An example of this phenomena is shown in Figure 25. It

should be noted that about 40% of the filters actually improved their

initial estimates and about 70% terminate detecting the same signal

as the initial detection (null signal in the case of initial false alarm).

Another measurement of interest is the distribution of readout

times. Three separate distributions are shown in Figure 26.

Figure 26(a) represents the measured D for the energy detections

of S . Figures 26(b-c) give the distribution for the same data as

processed by Systems i and 4 respectively. The results are typical

that System i has a wide spread of readout times while System 4 is

fairly narrow. System 4, however, detects far fewer waveforms at

R = 5.
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The results of this test also verify that the time of detection

of the first waveform to a large extent determines Liie time oi

detection of the rest of the pulses. Hence, if the initial detection

is early, all will have a tendency to be early.

Although the general problem involves multiple waveform

environments, it is of interest to examine filter operation in the

presence of only one signal. Table IV gives the results of the few

trials run using a single waveform. The first three tests used

fixed amplitudes while the last treated the variable amplitude

situation. The initial and final quality of the estimates are given

and it is seen that they improve as the signal-to-noise ratio

improves. System number 4 does not seem to produce good results

until R = 20. In the case of variable amplitude pulses, all systems

worked well missing only some of the lower level signals.

Table V illustrates the filter operation in the presence of two

waveforms of higher signal-to-noise ratio. In one case, one signal

varies in amplitude while the other remains fixed. The one new

tendency displayed is the increase in incorrect detections by

Systems i and 2 as R increases. One would expect this tendency

to arise in view of past discussion. For example, a linear filter

matched to Sa will detect a very large S even if the correlation

of the two waveforms is small.
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TABLE IV

Filter Operation in a Single Waveform Environment

System 1 2 3 4 5 6

Correct Detections 12 12 4 2 12

R = 5 Missed Signals 7 7 15 17 7

RP = 0 False Alarms 5 5 3 1 3

Initial Correlation .71 .71 .71 .71 .71

Final Correlation .69 .68 .55 . 66 .64

Correct Detections 17 18 15 2 17

R = •0 Missed Signals 2 1 4 17 2

R =0 False Alarms 2 4 1 0 2

Initial Correlation .83 .83 .83 .83 .83

Final Correlation .915 .90 .91 .65 .92

Correct Detections 19 19 19 17 19

R = 20 Missed Signals 0 0 0 2 0

RP = 0 False Alarms 1 1 0 0 0

Initial Correlation .905 .905 .905 .905 .905

Final Correlation .978 .978 .985 .98 .985

Correct Detections 15 15 15 13 15 i5

Ra = 5-40 Missed Signals 4 4 4 6 4 4G

RP =0 False Alarms 2 2 0 0 2 1

Initial Correlation .945 .945 .945 .945 .945 .945

Final Correlation .95 .95 .965 .975 .95 .96
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TABLE V

Filter Operation in a Two Waveform Environment

Systems 1 2 3 4 5 6

Correct Detections 15 i5 13 3 15 14

R = 10 Missed Signals 4 4 6 16 4 5a

R = 10 False Alarms 0 0 0 0 0 0

Incorrect Identification 4 4 1 0 3 1

Initial Correlation .61 .61 .61 .61 .61 .61

Final Correlation .76 .77 .71 .80 .55 .79

Correct Detections 19 19 19 47 49 19

R = 20 Missed Signals 0 0 0 2 0 0a

R = 20 False Alarms 0 4 0 0 0 0

Incorrect Identification 7 7 2 1 4 2

Initial Correlation .903 .903 .903 .903 .903 .903

Final Correlation .948 .963 .921 .979 .948 .921

R =5-40 Correct Detections 48 47 47 14 18 46a
RP =20 Missed Signals 1 2 2 5 1 3

False Alarms 0 2 1 0 2 1

Incorrect Identification 4 6 2 1 4 3

Initial Correlation .905 .905 .905 .905 .905 .905

Final Correlation .92 .93 .90 .975 .895 .91
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To demonstrate the discrimination superiority of the parabolic

filter over Systems I and 2 (linear and Case MII), it is necessary to

focus on large signals. If S 0 is made so large that

N * N*
Es s o Ns s ( a93)

M = m ma m= ima ma

then no change in the threshold will affect the discrimination

properties of the first two systems. An experiment of ten trials was

performed with Ra = 20 and R 56, and the results are given in

Table VI.

TABLE VI

Operation with Large S

Systems 1 2 3 4 5 6

Initial Detection S

Per Cent S Detected 99 99 89 99 99

Per Cent S Detected 100 51 16 61 34

Initial Detection S P

Per Cent S Detected 84 40 8 46 40

Per Cent S Detected 100 100 100 100 100

Initial Detection Noise

Per Cent S Detected 94 60 0 79 60
aL

Per Cent S Detected 100 100 0 100 100P
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Due to an error, no data was obtained for System Z. It would have

been almost identical to that obtained for System I. System I per-

forms very poorly and detects nearly all waveforms, while the

parabolic structures show varying degrees of discrimination. It is

also noted that System 4 is quite narrow and detects little that is

not similar to the first detection. The fact that it did not detect

either Sa or S after an original false alarm also verifies the

discrimination characteristics.

As one last test on this point two very large waveforms

(Ra = 200, R= 900) were used and Table VII illustrates the results.

TABLE VII

Operation with Large S and S(Ip

Systems 1 2 3 4 5 6

Initial Detection S
aPer Cent S Detections 100 100 100 100 100 100

Per Cent S Detections 100 100 50 0 50 0

As expected, the first two systems detected everything while the

others showed varying degrees of discrimination. System 4 com-

pletely eliminated S@.
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A comparison of Tables VI and VII is interesting because it

reveals that the parabolic filters actually perform better in the

presence of large unwanted signals. This may be explained by

noting that detection is based upon

s "v

But

10 1

Ev s

F = IVl cos o (95)

Bum

so Equation (94) becomes

-a V 2 sin 2 +b =VI cos o = F (96)

At a fixed angle, the first term becomes more important at higher

energy, thus lowering F below the detection threshold. In other

words, the larger the magnitude of the data, the more closely it

must match the estimate to be detected. This particular feature

is of advantage in filters where the data is used to form an estimate.

A very large incorrect detection would deteriorate the future

performance greatly.
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To study detection P.nd estimation of more than one signal at

a time, a second filter (B) was constructed under the criterion

discussed in Section MI. In all cases filters A and B followed the

same parameter rules. Since filter B had no effect on filter A,

the results of A are similar to what has already been presented.

The performance of the second filter will be summarized. At low

values of R, the second system does not detect an initial signal

until quite late and, consequently, accomplishes little. Even at

R a = R = 10 the second filter behaves poorly. In several cases,

the initial detection was S•, but the final estimate was Sa . Thus,

in many cases, both estimates converged to S . Figure 27 illus-

trates one complete system and the difficulties involved. It is

noted that filter B did not begin operating until late because some

early examples of S were being detected by filter A. Examples

of S P which were not detected by filter A did not have enough

energy to trigger the second system until quite late in the run. At

higher signal-to-noise ratios, the problem of incorrect detections

by filter A blocking initiations of filter B became more pronounced.

Thus, the linear and Case III structures worked very poorly in

parallel arrangement. The parabolic structures operated with

varying degrees of success, but for the most part worked very well

and in some cases perfectly. Figure 28 shows the correlation versus

time for one successful parallel arrangement. Figures 29 and 30

illustrate the build-up of the two estimates for the trial shown in

Figure 28.
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The only new feature here is in obtaining the initial estimate.

Once it is obtained, the filter B has the same characteristics as the

ones previously discussed. However, to insure a good initial

detection, it is necessary to have a structure with good discrimina-

tion properties.

A few other tests were also run to demonstrate certain points.

One set of runs was made to determine the effects of different

dimension signals upon operation. In other words, the effect of a

poor choice of N or T was observed. It was found that for signal

dimension greater than N (S of Figure 22), the estimates con-

verged to a part of the waveform. For very low dimension

waveforms (S and S6 of Figure 22), poor results were obtained

for R = 5, 10. There seemed to be improvement as the dimension

increased, but too few trials were made to be conclusive.

One test was made to show the change over from an Sa filter

to an S filter. The input was set up to start with an Sa detection,

but the normal repetition rate of Sa was reduced by 4. Thus, SP

became the predominant waveform. Figure 31 shows the estimate

correlation with each function as a function of computer time.

Figure 32 shows the final estimate of the filter. It is seen that

s3 - S10 provides a good estimate of SP and sI - s5 provides a

rather poor estimate of S . The actual estimate was formed bya

detecting in S, pulses one interval early and the Sa pulses three

intervals too late. Thus, the observer obtains a somewhat ambiguous
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result. Note, however, that the estimate was obtained with a filter

which is not useful for multiple waveform environments. Figure 32

demonstrates the type of result the observer would obtain thinking

that only one waveform was present.

To illustrate the effect of bias in the estimates, one run was

made with no signals present and all detections were false. Table

Vm shows the number of false alarms and the correlation of the

final estimate with the initial.

TABLE VIII

Bias Effect of False Alarms

Systems i 2 6 7

False Alarms 5 7 6 4

Correlation .792 .887 .920 .90O

The results of this short experiment show how little the estimate

has changed from its initial value even though only false detections

have occurred. It illustrates that a noise pattern similar to the

first estimate has been found.

The effects of bias can also be well illustrated by means of

Figures 33 and 34. Figure 33 shows the convergence of a filter

from an initial false estimate to Sa . The relatively minor effects

of false alarms and incorrect identification@ are evident. Note,

however, that the curve reaches a limit of approximately 0. 87.
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Figure 34 illustrates why this is so. It also shows the similarity

between the initial and final estimates particularly at 8 10, 59, 97P

and s 1. The estimate is made up primarily of detections which are

late by one interval. With this type of readout time, the limit of the

convergence would be approximately 0. 93.

One other way of demonstrating the bias effect consists of

eliminating all previous explicit information. The elimination

was accomplished by replacing the estimate completely by the most

recent detection. A run was made using the last detection as the

estimate. After approximately ten detections, filters 3 and 4 still

had a correlation of final and initial estimate of greater than 0. 5.

The other correlations were lower.

A few experiments were run where the same data were passed

through the filters a number of times with the estimate continually

increasing. In other words, the last estimate of one pass formed

the first estimate of the next pass. In all cases, very little effect

was noted other than the detection of pulses which had occurred

before the initial energy detection of the first pass. There was

seldom any improvement in the estimate quality after the first trial.

One other result of moderate interest is the energy in the

estimate after a number of detections. Table IX shows the energy

in one set of estimates after 5 detections of signals with R = 0, 5,

10, 20.
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TABLE IX

R Estimate Energy

0 (false alarms) 329

5 371

10 435

20 690

Not all of the detections are necessarily correct. Thus, by

measuring the estimate energy, the observer has not only an

indication of the signal energy, but also an indication of whether

the estimate might be due to false alarms only. On the basis of

the thresholds used for the linear system in the experiments the

minimum possible value of the estimate energy would be

( r2 + 4 x 2.33)2 a 200 (97)

Equation (97) assumes each detection is just at the threshold.
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VI. CONCLUSIONS

The experiments have demonstrated some of the capabilities

and limitations of automatic data procesaing. An examination of

the experiments and results provides an overall picture of the pos-

sibilities of adaptive filtering. It is apparent that the cross section

of filter structures studied operate moderately well at a signal-to-

noise ratio of 5. It is unfortunate that a lower threshold was not

chosen for Systems 3 and 4 in order to obtain a better assessment

of performance at low R. With lower thresholds, it is expected

that both would operate, but with lower detection rates than those

of Systems I and Z. Throughout the experiments, there is only

one situation where the first two structures show to advantage; that

of an initial false or poorly timed detection in a single waveform

environment. Here the larger decision region offered by these

filters explains the ability to correct for poor initial decisions.

The parabolic filter (System 6) can be used to some extent to com-

pensate for initial error. At low values of I the decision region is

large and decreases in size as I increases and, hopefully, the

estimate improves. One set of data did exhibit the phenomenon of

going from an initial false alarm to an estimate of Sa before the

filter structure became too narrow. System 6 has the advantage,

however, of being able to operate in this mode in a multiple signal

environment. Surprisingly, there are no apparent advantages in

using the first two systems in a single waveform environment
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other than to compensate for initial error. For large multiple

waveforms, the parabolic filters were obviously superior as should

be expected from Section II. In large signal cases where the initial

detections are very accurately timed, the narrow structure performed

very well.

The parallel processing of more than one estimate was very

successful for R = 20, utilizing parabolic filters. To more fully

investigate lower values of R, it would be necessary to provide

more samples of S and perhaps lower the filter thresholds

slightly. In any event, the automatic processing of the two wave-

forms produces results which could not be matched by any visual

techniques. (For example, see Figure 23 which is the beginning

of the data leading to Figures 28-30). There is no new difficulty

in now extending the processing to as many parallel filters as

desired. Each new one would be initiated if none of the established

filters detected a pulse during the interval that the energy exceeded

the threshold. It should also be noted that some criterion could be

used to prevent ambiguous detections (for example, t = 783,

Figure 28) after the initial detection of filter B. An added condition

for detection in filter B could then prevent some detections of S

and force the estimate of S to be more reliable. In the paper, no

such restriction was used.
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The experiments were run with moderately high duty ratios

and a rather fortuitous choice of N. Each condition has an effect

upon the preceding arguments. If the pulses occur less frequently,

it would be necessary to lower the false alarm rate thus reducing

the probability of detection. More signal examples would then be

required to yield the same estimate qualities shown here. The

relative merits of the various filters would not change. A less

accurate choice of N does affect the relative merits. In dealing

with unknown data, the observer will generally choose N larger

than any waveform expected. As the estimate builds up, some of

the components will tend to zero, effectively reducing the dimension

of the estimate. But, if nothing else is done, the energy dimension

will remain at N and the energy component in Equation (77) will be

too large for accurate detection. If desired, the energy dimension

could also be reduced by determining the number of components con-

taining some fraction of the estimate energy and using it in

Equation (77). One advantage of an energy dimension larger than

signal dimension will be illustrated in Appendix B.

The one unexpected result of the experiments is the high

correct detection rate of the first two systems at R = 5. Figure Z2

indicates that the detection rate for the matched filter is only 0. 46.

However, the value assumes detection only at the correct readout

time. There is also the possibility of the signal being detected at

a slightly different time while being missed at the correct time.
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Thus, it is possible for detection probabilities to be considerably

higher than the theoretical values. An examination of 190 signals

at R = 5 showed that the probability of detection with a matched

filter at the correct time was 0. 46, but the overall detection

probability was 0. 57. The fact that the signal may be detected at

several different times also tends to increase the curves of

Figure 21 for low values of cos 0. As an example, consider the

detection of S (IR = 5) by three linear filters with poor correlation.

a. Filter which examines each data sample independently

(S* = 11, 0, .. .01)

Here coo 0 1 = 0. 354

IT
and the probability of detection is 0. 063.

There are now eight independent points at which a true

detection can take place. The probability of missing all

eight samples is (I - 0.063)8 = 0.594

and the total probability of detection is 0. 406.

b. Filter which examines two successive samples

(S* = {i, 1,0, .... 0})

Here cos 6 = 0. 5

and the probability of detection is 0. i15.

There are now 4 independent measurements which could

produce correct detections.

The total probability of detection is

1 -(1 - 0.115)4 = 0.387.
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c. Filter which examines four successive samples

(S* =o}1,4,,i,0,...})

Here cos 0 = 0. 707

and the probability of detection is 0. 233.

There are two independent measurements which could

produce detections. The total probability of detection is

2I - (I - 0.233) = 0.412.

It should be noted that the total probability of detection is still

higher for Cases b and c than the values given. There are actually

more than four or two times at which detection can occur, but these

measurements are not independent of the others. Thus, it can be

seen that the filters can still have high detection probabilities with

poor estimates.

The three cases discussed above correspond to estimates

which may be caused by poor initial readout time or peaks in the

estimate due to noise. An example of a poor initial estimate from

the experiments is given below in normalized form.

S* = {0.32,0.28,0.74,0.06,0.31,0.00,0.04,0.24,-0.16,0.271

It is seen that most of the energy is concentrated in the first 3 terms

and most of it in the 0. 74 term. Although the estimate is poor, it

does allow future waveforms to be detected more reliably than

Figure 21 indicates, but with poor readout timing.
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It is of some interest to study the effects of removing the

restrictions on the problem imposed in the Introduction. For

instance, if it is known with certainty that only one waveform

exists either System i or 2 could be used to slight advantage.

The relaxation of the variable amplitude restriction offers no

particular advantage, but will be discussed from a different point

of view in Appendix A. If the waveforms are known, matched

filters are the optimum approach. However, there is still the

problem of determining the times to read the outputs of the filters

in the case of multiple signals. Appendix B will discuss the read-

out problem of multiple known signals. If the waveforms have a

fixed period, the detection and estimation process could be

improved. Errors can also be found and perhaps removed if

storage facilities are used. Figure 28 shows how the errors can

be determined. It is obvious from the figure that both Sa and S

have a fixed repetition rate. The repetition intervals can be

determined easily by looking at the figure, or the determination

could be done automatically. The filter used is narrow and the

readout times are quite accurate. It is apparent that two samples

of S have been missed (t = 208, 258) and two samples of S

have been missed (t = 183, 583). Without using the symbols given

in the figure, it is obvious that the ambiguous detection at t = 783

correctly belongs to the S system. If many pulses are available

to the observer, it may be possible to determine the period and use
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the information to lower the thresholds at future expected arrival

times. Very good estimates could be obtained because of the large

number of samples and the decrease in bias because of the thres-

hold reduction. Knowledge of readout time removes almost all of

the problems outlined previously. The only limitation of estimates

would be the number of signals available and the bias inherent in the

detection decision. If the observer removes the real time restric-

tion, a number of types of operation are possible. These include

new passes of the data through different parameter filters to

perhaps refine the estimates. The few experiments of this type

attempted gave no indication that the approach is useful, however.
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APPENDIX A AMPLITUDE FILTERS

A special application of the basic filter structure,

Equation (77), is presented here. In some of the discussion of

Section II, it was assumed that two identical waveforms of different

amplitudes represented entirely different signals. For example,

in Case IV detection was based upon the given waveform falling

within a small range of amplitudes. This feature may be used to

advantage in separating pulses on the basis of amplitude. Waters

(13) has discussed the separation of rectangular pulses in noise.

It will be noted from the discussion of Case IV that the discrimina-

tion qualities of structures of the form of Equation (16) are

independent of wave shape.

To examine the separation characteristics, a

single test was run and the results are presented here because of

the assumption of known waveform and amplitudes. The computer

program previously described was modified to utilize a fixed,

known estimate. Since pulse shape was irrelevant, a rectangular

pulse was used for convenience. The input included four signals

of ten interval length and R = 20, 80, 180, and 320. The noise

again had unit variance and zero mean. The hypothesis Hi that a

signal of amplitude Ai is present is chosen if
* 2

N A i 1 s

E (m -< Am=1 V/ m ,2
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N 2  N v sa
M v 2At mMm +

=i m m=i/ N *2
E a

m= I m

or

N vs N N
2A. E m m E > -A 2 (A-i)

'm= N *2 m= n m

mm=1

Detection is based upon the error energy being less than a specified

level.

No attempt was made to optimise (in any sense) the

filter performance. The threshold value was selected by noting that

if the hypothesis is correct

A. s
v 1 m +n

m N 2 m

N* ztm

N As
E v E) } = No- =10 (A-2)

m=N *2

and if the hypothesis Is incorrcct

V A= m + n

Es *N* m

E As(*mNo 2 2( 2 (A -3)

{m=Ii Nf!. *2 r(A- 1
ams
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With the values of Ai used, the minimum value of Equation (A-3) is

30. A threshold of A = 15 was chosen to provide fairly good separa-

tion characteristics.

Table A-I gives the results of the experiment and a

comparison with the ideal performance of matched filters with dual

thresholds.

TABLE A-I

Detection Characteristics of Amplitude Filters

Input Amplitude •Z 2 / 3 /2W 4 Pf 0

Number of Signals 10 10 5 4

Error Energy Criterion

Detections of / Filter 9 6

Detections of 2 -/2 Filter i 9

Detections of 3 4 Filter 2 4

Detections of 4 v/O Filter 4

Matched Filter

Detections of V Filter 9 3

Detections of 2 40 Filter 1 10

Detections of 3 M Filter 5

Detections of 4 41O Filter 4
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The matched filter results are based upon thresholds spaced

equidistant between the expected outputs from the five possible

signals (Ai = -/2"0, 2 20, 3 4/-, 4 12-0 and 0).

The results show rather poor performance at the

lowest level because of numerous false alarms, but good charac-

teristics at other amplitudes. The fact that one signal was detected

simultaneously by two filters demonstrates that the threshold chosen

does not lead to mutually exclusive decision regions. The threshold

could be modified to provide exclusive decision regions or slightly

better overall performance.

The filter of Equation(A-1) possesses certain

advantages over other types of amplitude filters. It operates

equally well for all pulse shapes and does not require the use of

dual thresholds. The system described also inherently discrimi-

nates against other waveforms which may be present.
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APPENDIX B AUTOMATIC RECOGNITION OF HAND SENT

MORSE CODE CHARACTERS

The automatic detection of Morse code signals

represents an interesting application of adaptive filtering techniques

(5). In hand sent messages the character lengths may vary con-

siderably with time and variable processing could be used to track

these changes. There is one difficulty in using the filter previously

discussed in the decoding operation. Generally, the problem is that

of separating two waveforms where one waveform is identical to a

portion of the other. Figure B-1 illustrates the difficulties in

deciding which of two waveforms, SK or SR, is present. Unless

special precautions are taken, a filter which detects SK will also

detect SR. The precautions necessary may be determined by

referring to Figures B-i(b, c) which show the paths of SR and SK

through the signal space as a function of time. The coordinates

represent the last three samples observed with the most recent

sample in the s * direction and the oldest sample in the s: direction.
3

If the S decision region is chosen in either the si or the a

direction, SK would be detected properly. However, the filter

would also detect SR at tB + 4 or at tB' Notice that if the observer

places a parabolic decision region in the a4 direction (Figure B-i(d)),

SR will be discriminated against because its path through the space

does not enter the region.
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The equation- for the filter boundary may be written

22 32V's•-- a{(V. s4 ) +(V's 3 ) } + A

{(V s*)2 + (V s*)? +(V- @*)2 (-(W 2 *2 + A
12 ,2 32 2 A

Sa v 2+ v•2 + v. 2 - + v 2 -+ A* *21. Z v1Z 2V 3z 2

3 v s * 3 3 v 2
E m m =a E v 2 E _mm_ +A

m = 1' F3s2 m=1 m m-V- *2

m m

where

to- , 1, 01
m

The form of the filter is identical to Equation (77).

Now, however, the dimension of the energy measure is larger than

the signal dimnension in order to examine each side of the pulse for

zero compor0 ents (or small components if noise is present). The

values of a Eand A may be selected such that only a signal of unit

duration will be detected. The filter for detecting SR would be a

parabolic remion in the I, i, 4} direction. In this case, the

energy meas vre and the signal have the same dimension so any

rectangular pulse of more than three interval duration would be
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detected as S The addition of two more dimensions to the energy

measure would provide a filter structure which could discriminate

against longer pulses.

On the basis of the above discussion, a few experiments

were performed using sampled, hand sent, Morse code as the input

to the double filter system described in the paper. The space infor-

mation was removed by placing the character pulses at fixed

intervals of time. During the transmission the dot lengths varied

between one and five intervals and the dashes between four and- ten

intervals. Initial estimates of the characters were used with

dot estimate =, 1 0,0,0O,O},

dash estimate = I To y, To - , T-, T-- 0i

Trials were made with three choices of a and A. The results

showed error rates of 7-81, in the character identification. Error

rates of about 40/ would have been obtained with slightly different

parameter choices because half of the errors were due to a failure

in detecting unit interval length pulses which are obviously dots.

The filters followed the operator charactcristics quite well,

correctly detecting early dots of length five and later dashes of

length four.
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Final estimates were of the form

dot estimate = { 0, .03, .68, .68, .27, 0,0,0,01

dash estimate = {.41, .41, .41, .41, .39, .33, .Zo, .10, .05, 01

One last trial was made with noise also present. The

noise was of sufficient amplitude to prevent the measurement of pulse

width by determining the interval that the threshold was exceeded.

The filters missed about 351 of the pulses but incorrectly identified

only 5%.

From the discussion and the experimental results,

it is apparent that the basic filter structure can be used to separate

pulses on the basis of pulse width, even in the presence of noise.

The importance of extra dimensions in the detection of similar wave-

forms was also demonstrated but it leads to more missed signal

errors. The filter also demonstrated the ability to track slowly

varying patterns in a real situation.
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